Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2322563121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557192

RESUMO

Mammalian switch/sucrose nonfermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, an orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 (ATP binding cassette subfamily B member 1) overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.


Assuntos
Adenosina Trifosfatases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Ratos , Camundongos , Animais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem Celular , Cromatina , Mamíferos/genética , Antagonistas de Receptores de Andrógenos , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
2.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38586029

RESUMO

Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which was exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition. In vivo experiments using a novel, orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.

3.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464081

RESUMO

Mammalian switch/sucrose non-fermentable (mSWI/SNF) ATPase degraders have been shown to be effective in enhancer-driven cancers by functioning to impede oncogenic transcription factor chromatin accessibility. Here, we developed AU-24118, a first-in-class, orally bioavailable proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases (SMARCA2 and SMARCA4) and PBRM1. AU-24118 demonstrated tumor regression in a model of castration-resistant prostate cancer (CRPC) which was further enhanced with combination enzalutamide treatment, a standard of care androgen receptor (AR) antagonist used in CRPC patients. Importantly, AU-24118 exhibited favorable pharmacokinetic profiles in preclinical analyses in mice and rats, and further toxicity testing in mice showed a favorable safety profile. As acquired resistance is common with targeted cancer therapeutics, experiments were designed to explore potential mechanisms of resistance that may arise with long-term mSWI/SNF ATPase PROTAC treatment. Prostate cancer cell lines exposed to long-term treatment with high doses of a mSWI/SNF ATPase degrader developed SMARCA4 bromodomain mutations and ABCB1 overexpression as acquired mechanisms of resistance. Intriguingly, while SMARCA4 mutations provided specific resistance to mSWI/SNF degraders, ABCB1 overexpression provided broader resistance to other potent PROTAC degraders targeting bromodomain-containing protein 4 (BRD4) and AR. The ABCB1 inhibitor, zosuquidar, reversed resistance to all three PROTAC degraders tested. Combined, these findings position mSWI/SNF degraders for clinical translation for patients with enhancer-driven cancers and define strategies to overcome resistance mechanisms that may arise.

4.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464251

RESUMO

The androgen receptor (AR) is a ligand-responsive transcription factor that binds at enhancers to drive terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to drive hyper-proliferative, metastatic, or therapy-resistant phenotypes, the molecular mechanisms of which remain poorly understood. Here, we show that the tumor-specific enhancer circuitry of AR is critically reliant on the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone 3 lysine 36 di-methyltransferase. NSD2 expression is abnormally gained in prostate cancer cells and its functional inhibition impairs AR trans-activation potential through partial off-loading from over 40,000 genomic sites, which is greater than 65% of the AR tumor cistrome. The NSD2-dependent AR sites distinctly harbor a chimeric AR-half motif juxtaposed to a FOXA1 element. Similar chimeric motifs of AR are absent at the NSD2-independent AR enhancers and instead contain the canonical palindromic motifs. Meta-analyses of AR cistromes from patient tumors uncovered chimeric AR motifs to exclusively participate in tumor-specific enhancer circuitries, with a minimal role in the physiological activity of AR. Accordingly, NSD2 inactivation attenuated hallmark cancer phenotypes that were fully reinstated upon exogenous NSD2 re-expression. Inactivation of NSD2 also engendered increased dependency on its paralog NSD1, which independently maintained AR and MYC hyper-transcriptional programs in cancer cells. Concordantly, a dual NSD1/2 PROTAC degrader, called LLC0150, was preferentially cytotoxic in AR-dependent prostate cancer as well as NSD2-altered hematologic malignancies. Altogether, we identify NSD2 as a novel subunit of the AR neo-enhanceosome that wires prostate cancer gene expression programs, positioning NSD1/2 as viable paralog co-targets in advanced prostate cancer.

5.
Sci Rep ; 14(1): 5583, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448490

RESUMO

In this report, we present OLAF-Seq, a novel strategy to construct a long-read sequencing library such that adjacent fragments are linked with end-terminal duplications. We use the CRISPR-Cas9 nickase enzyme and a pool of multiple sgRNAs to perform non-random fragmentation of targeted long DNA molecules (> 300kb) into smaller library-sized fragments (about 20 kbp) in a manner so as to retain physical linkage information (up to 1000 bp) between adjacent fragments. DNA molecules targeted for fragmentation are preferentially ligated with adaptors for sequencing, so this method can enrich targeted regions while taking advantage of the long-read sequencing platforms. This enables the sequencing of target regions with significantly lower total coverage, and the genome sequence within linker regions provides information for assembly and phasing. We demonstrated the validity and efficacy of the method first using phage and then by sequencing a panel of 100 full-length cancer-related genes (including both exons and introns) in the human genome. When the designed linkers contained heterozygous genetic variants, long haplotypes could be established. This sequencing strategy can be readily applied in both PacBio and Oxford Nanopore platforms for both long and short genes with an easy protocol. This economically viable approach is useful for targeted enrichment of hundreds of target genomic regions and where long no-gap contigs need deep sequencing.


Assuntos
Bacteriófagos , RNA Guia de Sistemas CRISPR-Cas , Humanos , Análise de Sequência de DNA , Genômica , Proteína 9 Associada à CRISPR , DNA/genética
6.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328238

RESUMO

The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.

8.
Diagnosis (Berl) ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37877354

RESUMO

OBJECTIVES: Diagnostic uncertainty is not reliably communicated to patients and caregivers. This study aims to identify barriers and facilitators to effective communication of diagnostic uncertainty, including development of potential tools and strategies for improvement, as perceived by healthcare professionals and caregivers. METHODS: We completed structured interviews with providers and caregivers of hospitalized children with uncertain diagnoses (UD). The interview guides addressed barriers to communication, key components for communication of uncertainty, and qualities of effective communication. The interviews concluded with respondents prioritizing potential interventions to improve communication of uncertainty. Interviews were audio recorded, transcribed, and independently analyzed by two team members to identify common themes. RESULTS: Ten provider and five caregiver interviews were conducted. Common barriers to communication of uncertainty included time constraints, language barriers, and lack of clear definition of UD. Caregiver suggestions for improvement included sharing expectations of the diagnostic process and use of both written and visual communication tools. Interview respondents favored interventions of a sign summarizing the key components of diagnostic uncertainty for display in patient rooms and a structured diagnostic pause during daily rounds. CONCLUSIONS: We identified several potential interventions that may enhance communication of diagnostic uncertainty and better engage patients and caregivers in the diagnostic process.

9.
ISME Commun ; 3(1): 49, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225918

RESUMO

Toolkits of plasmids and genetic parts streamline the process of assembling DNA constructs and engineering microbes. Many of these kits were designed with specific industrial or laboratory microbes in mind. For researchers interested in non-model microbial systems, it is often unclear which tools and techniques will function in newly isolated strains. To address this challenge, we designed the Pathfinder toolkit for quickly determining the compatibility of a bacterium with different plasmid components. Pathfinder plasmids combine three different broad-host-range origins of replication with multiple antibiotic resistance cassettes and reporters, so that sets of parts can be rapidly screened through multiplex conjugation. We first tested these plasmids in Escherichia coli, a strain of Sodalis praecaptivus that colonizes insects, and a Rosenbergiella isolate from leafhoppers. Then, we used the Pathfinder plasmids to engineer previously unstudied bacteria from the family Orbaceae that were isolated from several fly species. Engineered Orbaceae strains were able to colonize Drosophila melanogaster and could be visualized in fly guts. Orbaceae are common and abundant in the guts of wild-caught flies but have not been included in laboratory studies of how the Drosophila microbiome affects fly health. Thus, this work provides foundational genetic tools for studying microbial ecology and host-associated microbes, including bacteria that are a key constituent of the gut microbiome of a model insect species.

10.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824770

RESUMO

Toolkits of plasmids and genetic parts streamline the process of assembling DNA constructs and engineering microbes. Many of these kits were designed with specific industrial or laboratory microbes in mind. For researchers interested in non-model microbial systems, it is often unclear which tools and techniques will function in newly isolated strains. To address this challenge, we designed the Pathfinder toolkit for quickly determining the compatibility of a bacterium with different plasmid components. Pathfinder plasmids combine three different broad-host-range origins of replication with multiple antibiotic resistance cassettes and reporters, so that sets of parts can be rapidly screened through multiplex conjugation. We first tested these plasmids in Escherichia coli , a strain of Sodalis praecaptivus that colonizes insects, and a Rosenbergiella isolate from leafhoppers. Then, we used the Pathfinder plasmids to engineer previously unstudied bacteria from the family Orbaceae that were isolated from several fly species. Engineered Orbaceae strains were able to colonize Drosophila melanogaster and could be visualized in fly guts. Orbaceae are common and abundant in the guts of wild-caught flies but have not been included in laboratory studies of how the Drosophila microbiome affects fly health. Thus, this work provides foundational genetic tools for studying new host-associated microbes, including bacteria that are a key constituent of the gut microbiome of a model insect species. IMPORTANCE: To fully understand how microbes have evolved to interact with their environments, one must be able to modify their genomes. However, it can be difficult and laborious to discover which genetic tools and approaches work for a new isolate. Bacteria from the recently described Orbaceae family are common in the microbiomes of insects. We developed the Pathfinder plasmid toolkit for testing the compatibility of different genetic parts with newly cultured bacteria. We demonstrate its utility by engineering Orbaceae strains isolated from flies to express fluorescent proteins and characterizing how they colonize the Drosophila melanogaster gut. Orbaceae are widespread in Drosophila in the wild but have not been included in laboratory studies examining how the gut microbiome affects fly nutrition, health, and longevity. Our work establishes a path for genetic studies aimed at understanding and altering interactions between these and other newly isolated bacteria and their hosts.

11.
Med Mycol ; 60(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36002024

RESUMO

Invasive fungal infections are increasingly common and carry high morbidity and mortality, yet fungal diagnostics lag behind bacterial diagnostics in rapidly identifying the causal pathogen. We previously devised a fluorescent hybridization-based assay to identify bacteria within hours directly from blood culture bottles without subculture, called phylogeny-informed rRNA-based strain identification (Phirst-ID). Here, we adapt this approach to unambiguously identify 11 common pathogenic Candida species, including C. auris, with 100% accuracy from laboratory culture (33 of 33 strains in a reference panel, plus 33 of 33 additional isolates tested in a validation panel). In a pilot study on 62 consecutive positive clinical blood cultures from two hospitals that showed yeast on Gram stain, Candida Phirst-ID matched the clinical laboratory result for 58 of 59 specimens represented in the 11-species reference panel, without misclassifying the 3 off-panel species. It also detected mixed Candida species in 2 of these 62 specimens, including the one discordant classification, that were not identified by standard clinical microbiology workflows; in each case the presence of both species was validated by both clinical and experimental data. Finally, in three specimens that grew both bacteria and yeast, we paired our prior bacterial probeset with this new Candida probeset to detect both pathogen types using Phirst-ID. This simple, robust assay can provide accurate Candida identification within hours directly from blood culture bottles, and the conceptual approach holds promise for pan-microbial identification in a single workflow. LAY SUMMARY: Candida bloodstream infections cause considerable morbidity and mortality, yet slow diagnostics delay recognition, worsening patient outcomes. We develop and validate a novel molecular approach to accurately identify Candida species directly from blood culture one day faster than standard workflows.


Assuntos
Candida , Candidíase , Animais , Hemocultura/veterinária , Candidíase/microbiologia , Candidíase/veterinária , Projetos Piloto , Saccharomyces cerevisiae
12.
Sci Rep ; 12(1): 6512, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444207

RESUMO

Identification of structural variants (SVs) breakpoints is important in studying mutations, mutagenic causes, and functional impacts. Next-generation sequencing and whole-genome optical mapping are extensively used in SV discovery and characterization. However, multiple platforms and computational approaches are needed for comprehensive analysis, making it resource-intensive and expensive. Here, we propose a strategy combining optical mapping and cas9-assisted targeted nanopore sequencing to analyze SVs. Optical mapping can economically and quickly detect SVs across a whole genome but does not provide sequence-level information or precisely resolve breakpoints. Furthermore, since only a subset of all SVs is known to affect biology, we attempted to type a subset of all SVs using targeted nanopore sequencing. Using our approach, we resolved the breakpoints of five deletions, five insertions, and an inversion, in a single experiment.


Assuntos
Sequenciamento por Nanoporos , Mapeamento Cromossômico , Genoma , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
13.
Genomics ; 113(6): 3804-3810, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534648

RESUMO

Long interspersed nuclear elements (LINEs) are retrotransposons that contribute to genetic variation in the human genome. LINE-1 elements in larger-scale studies are challenging to identify using sequencing technologies due to cost and scalability. We developed an approach using optical mapping for detection of full-length LINE-1 insertions and 10× sequencing for confirmation. We found 51 true positive full-length LINE-1 insertions, of which 4 are novel insertions, in NA12878. Repeating our analysis on a larger sample set representing 26 populations, we identified 329 full-length LINE-1 elements, of which 123 are novel. 24.8% of these 329 LINE-1 insertions were shared amongst all 5 superpopulations (AFR, AMR, EUR, EAS, SAS). The African superpopulation has a higher percentage of population-specific LINE-1 insertions than any other superpopulation. These data indicate that our approach can provide high-speed, cost-effective, and increased accuracy for LINE-1 detection. These data also provide an insight into variations of LINE-1 elements between different populations.


Assuntos
Genoma Humano , Elementos Nucleotídeos Longos e Dispersos , População Negra , Humanos , Retroelementos
14.
Artigo em Inglês | MEDLINE | ID: mdl-31056507

RESUMO

Genomic regions of high segmental duplication content and/or structural variation have led to gaps and misassemblies in the human reference sequence, and are refractory to assembly from whole-genome short-read datasets. Human subtelomere regions are highly enriched in both segmental duplication content and structural variations, and as a consequence are both impossible to assemble accurately and highly variable from individual to individual. Recently, we developed a pipeline for improved region-specific assembly called Regional Extension of Assemblies Using Linked-Reads (REXTAL). In this study, we evaluate REXTAL and genome-wide assembly (Supernova) approaches on 10X Genomics linked-reads data sets partitioned and barcoded using the Gel Bead in Emulsion (GEM) microfluidic method. Our results describe the accuracy and relative performance of these two approaches using the reference-based assessment module of QUAST. We show that REXTAL dramatically outperforms the Supernova whole genome assembler in subtelomeric segmental duplication regions, and results in highly accurate assemblies. Nearly all of the REXTAL "misassemblies" identified using default QUAST parameters simply pinpoint locations of tandem repeat arrays in the reference sequence where the repeat array length differs from that in the cognate REXTAL assembly by 1000 bp.


Assuntos
Estruturas Cromossômicas/genética , Genômica/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Genoma Humano/genética , Humanos
15.
Environ Toxicol Pharmacol ; 82: 103562, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33310082

RESUMO

In humans, the telomere consists of tandem 5'TTAGGG3' DNA repeats on both ends of all 46 chromosomes. Telomere shortening has been linked to aging and age-related diseases. Similarly, telomere length changes have been associated with chemical exposure, molecular-level DNA damage, and tumor development. Telomere elongation has been associated to tumor development, caused due to chemical exposure and molecular-level DNA damage. The methods used to study these effects mostly rely on average telomere length as a biomarker. The mechanisms regulating subtelomere-specific and haplotype-specific telomere lengths in humans remain understudied and poorly understood, primarily because of technical limitations in obtaining these data for all chromosomes. Recent studies have shown that it is the short telomeres that are crucial in preserving chromosome stability. The identity and frequency of specific critically short telomeres potentially is a useful biomarker for studying aging, age-related diseases, and cancer. Here, we will briefly review the role of telomere length, its measurement, and our recent single-molecule telomere length measurement assay. With this assay, one can measure individual telomere lengths as well as identify their physically linked subtelomeric DNA. This assay can also positively detect telomere loss, characterize novel subtelomeric variants, haplotypes, and previously uncharacterized recombined subtelomeres. We will also discuss its applications in aging cells and cancer cells, highlighting the utility of the single molecule telomere length assay.


Assuntos
Ensaios de Triagem em Larga Escala , Telômero , Humanos , Nanotecnologia
16.
Nucleic Acids Res ; 49(2): e8, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33231685

RESUMO

Whole-genome mapping technologies have been developed as a complementary tool to provide scaffolds for genome assembly and structural variation analysis (1,2). We recently introduced a novel DNA labeling strategy based on a CRISPR-Cas9 genome editing system, which can target any 20bp sequences. The labeling strategy is specifically useful in targeting repetitive sequences, and sequences not accessible to other labeling methods. In this report, we present customized mapping strategies that extend the applications of CRISPR-Cas9 DNA labeling. We first design a CRISPR-Cas9 labeling strategy to interrogate and differentiate the single allele differences in NGG protospacer adjacent motifs (PAM sequence). Combined with sequence motif labeling, we can pinpoint the single-base differences in highly conserved sequences. In the second strategy, we design mapping patterns across a genome by selecting sets of specific single-guide RNAs (sgRNAs) for labeling multiple loci of a genomic region or a whole genome. By developing and optimizing a single tube synthesis of multiple sgRNAs, we demonstrate the utility of CRISPR-Cas9 mapping with 162 sgRNAs targeting the 2Mb Haemophilus influenzae chromosome. These CRISPR-Cas9 mapping approaches could be particularly useful for applications in defining long-distance haplotypes and pinpointing the breakpoints in large structural variants in complex genomes and microbial mixtures.


Assuntos
Sistemas CRISPR-Cas , Mapeamento Cromossômico/métodos , Cromossomos Bacterianos/genética , Haemophilus influenzae/genética , RNA Guia de Cinetoplastídeos/genética , Alelos , Sequência de Bases , Benzoxazóis/análise , Simulação por Computador , Sequência Conservada/genética , RNA Polimerases Dirigidas por DNA , Farmacorresistência Bacteriana/genética , Corantes Fluorescentes/análise , Edição de Genes/métodos , Genoma Bacteriano , Genoma Humano , Haemophilus influenzae/efeitos dos fármacos , Haplótipos/genética , Humanos , Dispositivos Lab-On-A-Chip , Ácido Nalidíxico/farmacologia , Novobiocina/farmacologia , Motivos de Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único , Compostos de Quinolínio/análise , RNA Guia de Cinetoplastídeos/síntese química , Sequências Repetitivas de Ácido Nucleico/genética , Alinhamento de Sequência , Coloração e Rotulagem/métodos , Proteínas Virais
17.
Nat Commun ; 11(1): 5482, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127893

RESUMO

The current human reference genome is predominantly derived from a single individual and it does not adequately reflect human genetic diversity. Here, we analyze 338 high-quality human assemblies of genetically divergent human populations to identify missing sequences in the human reference genome with breakpoint resolution. We identify 127,727 recurrent non-reference unique insertions spanning 18,048,877 bp, some of which disrupt exons and known regulatory elements. To improve genome annotations, we linearly integrate these sequences into the chromosomal assemblies and construct a Human Diversity Reference. Leveraging this reference, an average of 402,573 previously unmapped reads can be recovered for a given genome sequenced to ~40X coverage. Transcriptomic diversity among these non-reference sequences can also be directly assessed. We successfully map tens of thousands of previously discarded RNA-Seq reads to this reference and identify transcription evidence in 4781 gene loci, underlining the importance of these non-reference sequences in functional genomics. Our extensive datasets are important advances toward a comprehensive reference representation of global human genetic diversity.


Assuntos
Variação Genética , Genoma Humano , População/genética , Mapeamento Cromossômico , Biologia Computacional , Expressão Gênica , Genômica , Técnicas de Genotipagem , Humanos , Anotação de Sequência Molecular , RNA-Seq , Análise de Sequência de DNA , Transcriptoma , Sequenciamento Completo do Genoma
18.
BMC Genomics ; 21(1): 485, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669102

RESUMO

BACKGROUND: Telomeric DNA is typically comprised of G-rich tandem repeat motifs and maintained by telomerase (Greider CW, Blackburn EH; Cell 51:887-898; 1987). In eukaryotes lacking telomerase, a variety of DNA repair and DNA recombination based pathways for telomere maintenance have evolved in organisms normally dependent upon telomerase for telomere elongation (Webb CJ, Wu Y, Zakian VA; Cold Spring Harb Perspect Biol 5:a012666; 2013); collectively called Alternative Lengthening of Telomeres (ALT) pathways. By measuring (TTAGGG) n tract lengths from the same large DNA molecules that were optically mapped, we simultaneously analyzed telomere length dynamics and subtelomere-linked structural changes at a large number of specific subtelomeric loci in the ALT-positive cell lines U2OS, SK-MEL-2 and Saos-2. RESULTS: Our results revealed loci-specific ALT telomere features. For example, while each subtelomere included examples of single molecules with terminal (TTAGGG) n tracts as well as examples of recombinant telomeric single molecules, the ratio of these molecules was subtelomere-specific, ranging from 33:1 (19p) to 1:25 (19q) in U2OS. The Saos-2 cell line shows a similar percentage of recombinant telomeres. The frequency of recombinant subtelomeres of SK-MEL-2 (11%) is about half that of U2OS and Saos-2 (24 and 19% respectively). Terminal (TTAGGG) n tract lengths and heterogeneity levels, the frequencies of telomere signal-free ends, and the frequency and size of retained internal telomere-like sequences (ITSs) at recombinant telomere fusion junctions all varied according to the specific subtelomere involved in a particular cell line. Very large linear extrachromosomal telomere repeat (ECTR) DNA molecules were found in all three cell lines; these are in principle capable of templating synthesis of new long telomere tracts via break-induced repair (BIR) long-tract DNA synthesis mechanisms and contributing to the very long telomere tract length and heterogeneity characteristic of ALT cells. Many of longest telomere tracts (both end-telomeres and linear ECTRs) displayed punctate CRISPR/Cas9-dependent (TTAGGG) n labeling patterns indicative of interspersion of stretches of non-canonical telomere repeats. CONCLUSION: Identifying individual subtelomeres and characterizing linked telomere (TTAGGG) n tract lengths and structural changes using our new single-molecule methodologies reveals the structural consequences of telomere damage, repair and recombination mechanisms in human ALT cells in unprecedented molecular detail and significant differences in different ALT-positive cell lines.


Assuntos
Homeostase do Telômero , Telômero/química , Linhagem Celular Tumoral , DNA/química , Humanos , Sequências Repetitivas de Ácido Nucleico
19.
Sci Rep ; 10(1): 12235, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699385

RESUMO

The most prevalent microdeletion in humans occurs at 22q11.2, a region rich in chromosome-specific low copy repeats (LCR22s). The structure of this region has defied elucidation due to its size, regional complexity, and haplotype diversity, and is not well represented in the human genome reference. Most individuals with 22q11.2 deletion syndrome (22q11.2DS) carry a de novo hemizygous deletion of ~ 3 Mbp occurring by non-allelic homologous recombination (NAHR) mediated by LCR22s. In this study, optical mapping has been used to elucidate LCR22 structure and variation in 88 individuals in thirty 22q11.2DS families to uncover potential risk factors for germline rearrangements leading to 22q11.2DS offspring. Families were optically mapped to characterize LCR22 structures, NAHR locations, and genomic signatures associated with the deletion. Bioinformatics analyses revealed clear delineations between LCR22 structures in normal and deletion-containing haplotypes. Despite no explicit whole-haplotype predisposing configurations being identified, all NAHR events contain a segmental duplication encompassing FAM230 gene members suggesting preferred recombination sequences. Analysis of deletion breakpoints indicates that preferred recombinations occur between FAM230 and specific segmental duplication orientations within LCR22A and LCR22D, ultimately leading to NAHR. This work represents the most comprehensive analysis of 22q11.2DS NAHR events demonstrating completely contiguous LCR22 structures surrounding and within deletion breakpoints.


Assuntos
Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/genética , Recombinação Homóloga/genética , Duplicações Segmentares Genômicas/genética , Alelos , Deleção Cromossômica , Mapeamento Cromossômico/métodos , Feminino , Genoma Humano/genética , Haplótipos/genética , Humanos , Masculino
20.
PLoS Genet ; 16(1): e1008347, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986135

RESUMO

Detailed comprehensive knowledge of the structures of individual long-range telomere-terminal haplotypes are needed to understand their impact on telomere function, and to delineate the population structure and evolution of subtelomere regions. However, the abundance of large evolutionarily recent segmental duplications and high levels of large structural variations have complicated both the mapping and sequence characterization of human subtelomere regions. Here, we use high throughput optical mapping of large single DNA molecules in nanochannel arrays for 154 human genomes from 26 populations to present a comprehensive look at human subtelomere structure and variation. The results catalog many novel long-range subtelomere haplotypes and determine the frequencies and contexts of specific subtelomeric duplicons on each chromosome arm, helping to clarify the currently ambiguous nature of many specific subtelomere structures as represented in the current reference sequence (HG38). The organization and content of some duplicons in subtelomeres appear to show both chromosome arm and population-specific trends. Based upon these trends we estimate a timeline for the spread of these duplication blocks.


Assuntos
Genoma Humano , População/genética , Telômero/genética , Evolução Molecular , Haplótipos , Humanos , Sequenciamento por Nanoporos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...